Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Lyapunov Exponent for Infinite Products of Random Matrices

In this work, we give a rigorous explicit formula for the Lyapunov exponent for some binary infinite products of random 2 × 2 real matrices. All these products are constructed using only two types of matrices, A and B, which are chosen according to a stochastic process. The matrix A is singular, namely its determinant is zero. This formula is derived by using a particular decomposition for the ...

متن کامل

Rates of Convergence for Products of Random Stochastic 2× 2 Matrices

Products of independent identically distributed random stochastic 2 × 2 matrices are known to converge in distribution under a trivial condition. Rates for this convergence are estimated in terms of the minimal Lp-metrics and the Kolmogorov metric and applications to convergence rates of related interval splitting procedures are discussed. AMS subject classifications. Primary: 60F05; secondary:...

متن کامل

Free probability and random matrices

In these lectures notes we will present and focus on free probability as a tool box to study the spectrum of polynomials in several (eventually) random matrices, and provide some applications.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2013

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2013.2248003